THE PARAXIAL APPROXIMATION FOR A DENSE ELECTRON BEAM
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Approximate equations are derived for a narrow (paraxial) electron
beam with a three-dimensional axis; these equations generalize the
familiar equations [1] to the case in which the field of the charge in
the beam is important. A class of beams is distinguished for which the
problem reduces to ordinary differential equations.

The paraxial approximation for a natrow beam of electron trajectories
in a given field is well known for the case in which the characteristic
dimension L, of the irregularities is much greater than a,, the charac-
teristic width of the beam. The field of a three~dimensional beam can
be included in the equations [1] if the beam density p is nonuniform
over lengths L,. The self-field of the beam was not actually taken into
account in [1]. In this paper we attempt to remedy this deficiency, with
partial success for an axisymmetric beam with a rectilinear axis [2].

1. The law of plane cross sectlons. It is convenient
to use a form for the equations of a monoenergetic
beam in which the Clebsch variables ¢, ¢, y are used
to represent the velocity field of the electrons vy:

g% gk, = g%fvple = (PEE**0p),a = 0,
Vo = Ay + Ele + Xt (1.1)

Here q% are curvilinear coordinates with a metric
tensor gaB; the subscript following the comma denotes
a derivative with respect to the appropriate coordinate;
subscripts which appear twice are summed from 1 to
3; Ay are the covariant components of the potential of
the magnetic field Hy. The remaining equations for a
steady nonrelativistic beam have the form

2%Pvevp = 29, (88°%%9,0)p = p, g2 = detlg®f]. (1.2)

Here ¢ is the potential of the electric field. The
physical constants (e > 0 is the charge and m the mass
of an electron; ¢ is the velocity of light) are omitted,
which corresponds to the following change of symbols

e (mey 14, — Ay, e (me)y H, — H,,

(e/m)p—>o, 4nle/mp-—p.

Herel = q1 is the longitudinal coordinate and s = q2
andq = q3are transverse coordinates relative to the
axial line R{l) of the narrow beam associated with the
Cartesian r:

r=R +ss4qq, s=1/k,
1 =R, =1lxs, R =dR/dl. 1.3)
Here ! is the arc length of the axis, and the unit
vectors [, s, and g form the accompanying right-handed
set (Fig. 1). Using the Frenet [3] formulas we have
s’ = —kl 4 uq,
E=|, «xk2=(1x%x1)1". (1.4)

’
= —X§,

Here k is the curvature, n is the torsion of the axis,
and it can easily be shown that

dr? = o?dl2 4 ds? + dg? — 2xqdlds + 2xsdldg,  (1.5)

6 ~—uq us
gap=|—ng 1 01,
%S 0 1
1 %q — %S
goh = ;—2 %g oP—u%® —ulsqg|. (1.8)
—us —u¥lg  o?—uig?

In relationships (1.6)
g% = det |g,p] = (1 — ks)2,
0= (1 —ks)2 %2 (2 + ¢%).

In (1.1), (1.2), and (1.6) an index of smallness €
should be set in those places where the small param-
eter e« appears as the result of transition to the di-
mensionless quantities

S/, glay, 1)Ly, vLy, kL, e, = a,/ Ly,

i.e., in front of k, »n, and derivatives with respect to
!. In doing so we single out the case of a narrow beam
close to a relatively smooth axis. As an example, the
equations for A, in a nonrelativistic beam can be writ-
ten in the form

4 - As'q = gHFr Ayg — ElAq.l = gH®,
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ed,, — Al,s = gH", Hq.s = Hs.qa
Hl,q = qu,z, Hl.s = 8Hs.h Ha = gaﬁHB. (1.7)

Fig. 1
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This leads to the paraxial approximation for A,:
A;= Qg — Qs 4 elf, (kQ, + 2xQ))s?,
As = ——1/2qu, Aq = 1/2918. (1.8)

Here Qj, Qg, and §iq are the values of Hj, Hg, and
Hy on the axis., In a paraxial beam the longitudinal
v&ocity v} compared with the transverse velocity vg,
Vg and the potential ¢ compared with vg and va must
be represented in the form
n=—e(l) -4, +-ePy
¢ =e2U 4t (Ess + Egq) +. (1.9)

Keeping the above in mind we easily obtain from
(1.1), (2.2), (1.6), {1.8), and (1.9) that

2U =%, E, =kt —vQ,, E;=11Q,,
Ex Uk, Fugk,y = §,r + usL,; + gl =0,

§,« = (9E/0l), (1.10)
(p?),x + (4,5 + (gp?),q = O,
Us(gy = Bagg) + ELoatq) + Yoot (1.11)
ut +ug? +2E8,: + 1.0 =2,
V55 +Poqq = 0 —n, dl=vdv,
By, = —1/,Qq, B,=1Qs, Q= Q; — 2uv,
2D = 2 4 0? (k2 — u? —xPg?) 4
+ (R — Q8)? + vs (4 Qg — 3Qks + 20 xs),
n=2k— %) 4+ Q2 + Q2 + .
+ 20 (xQ, —kQ,) + U, (1.12)

Here Egs. (1.10) correspond to the zeroth and first
approximations in €, and (1.11) to the second approxi-
mation. If we assume that U is the potential and Eg
and Eq are the field strengths on the axis, then Egs.
(1.10) are the exact equations for the electron trajec-
tories in the field of the beam. The sense of Eqs. (1.11)
appears more clearly when they are written in the
Lagrange variables 7, £, and i, where £ and n are the
coordinates of the electron in the initial cross section
T=0:

S;ee = €, — ¢,

9,71 = €gq + Qs,m = Ql — 2%v, (1.13)
vp = j(§, M) Is, td,n — Sond, 5™t
s=s(,&mn), ¢=gq(v &), (1.14)
€s,s 1 €g,q = 0 — 1,
€gs — €5, = Q, Q = dQ [ dr. (1.15)

Here j is the current density in the initial cross
section, the dot indicates a derivative with respect to
7, and a dash indicates a derivative with respect to i.
These equations are equivalent to the eqi:ations of a
nonstationary plane (s, q) electron cloud on a "space
charge" background n (7) whichis alternatingin "time" .
7 in a uniform "magnetic field" @ but with one differ-
ence: the density, multiplied by a function of time, sat-
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isfies the equation of continuity (pv is a longitudinal
component of current density of the beam). We thus ob-
tain a generalization of the familiar law of plane cross
sections [4] for the case of curvilinear motion with a
varying axial velocity. As one would expect, nonsta-
tionarity of the magnetic field leads to the appearance
of the curl € in the electric field strength eg, eq

It should be noted that the following can be reduced to Eqs. (1.11):
(1) the equations of a nonenergetic beam with an electron energy 4 (£),
(2) the equations of a nonsteady (t) beam, if we assume that the beam
parameters in (1.11) may be arbitrary functions of t — 7; i.e., non-
steady perturbations in the narrow beam propagate in the form of waves
moving along the beam with a velocity v.

The initial equations for a relativistic beamn differ only in the form
of (1.2),

£ vy =20+ (97 % (€™ 9,)p =0 (1 + g7, (L.16)

if we assume that vy /c is the 4-velocity and p is the scalar charge
density. Let v; be on the order of c. Then representing v; and ¢ in the
form (1.9) with an accuracy to 52, we easily obtain the same equations
as in (1.11) and also

204 (U] e = o yEs = k® — v,

VE; = vQ;, y =1+ Ue?, .17

The difference is in the expressions for A7, &, and n:

29D = 29 + 204 — (Ess + Eoq)%c™® +
+0? (3k3s2 — w2t — u%®) 4 (Qq — ¢5)% +
+ vs (4kQsq — 3ksQq + 2uQs),
A.ss+ A,qq = puc™?,
n=2 (8 — ) o+ 2 (1R — kQg) v+

+ U + Q2+ @ — (B2 + EgY) 73, (1.18)

Here €A is an increment to A in (1.8) which takes into account
the self (pinching) magnetic field of the beam. Thus the law of plane
cross sections in the form (1,18)~(1,15) is also valid for the case of a
weakly relativistic beam.

2. Degenerate Solutions. We include uniform beam
deformation in a plane cross section within the frame-
work of the inverse problem, as was done in [5] for the
case v = const and a rectilinear axis:

s=af + B, g=pk +vy, D@E)=av — Bp. (2.1)

In this case the axis coincides exactly with an elec- .
tron trajectory, Inserting (2.1) into (1.13)—(1.15) we
have

De; = lav — Bp +Q (pv — p)ls +
(B — af + Q (Vo — [if)lg,
Dey = ljiv — ¥p + Q Bp — av)l s +

(Vo —jip + @ (4p — Ba)lg, (2.2)

W — v 4ap — o = QD — o,, o, = const, (2.3)
D—2(@v—pp) +(n +Q)D — Qo, = ju/ v,

p = j, (wD)1. (2.4)

The same result is also obtained if we look for a
solution of the initial equations in the form of a Taylor
series in powers of s and q. Thus (2.1)—(2.4) describe
a narrow tube of trajectories, cut out of a wide beam
where the irregularity dimension is Lx. Equations



(2.8} and (2.4) leave five of the seven functions of 7 (¢,
B8, u, v,v,k, ) arbitrary, which means that we have a
fairly flexible basis for forming narrow beams with the
necessary parameters. For the five simplest types of
two-parameter deformations with the matrices

M, = DO, Mz=DB,
po1 01
dcos® —dsind
M, =
dsinb S cosO
M, — DcosB —sin® ’
Dsinf cosf
M, = Df:osﬂ — Dsin6 . M= a B , (2.5)
sin @ cos O BV

Egs. (2.3) and (2.4) assume the following forms, re-
spectively:

p=QD — o, (M), Dp —'BD = QD — w,, (M), (2.6)

D +(n+Q)D =Qo, +j,/v, (M, M), (2.7)
20 =Q— 0,/ D,(My, M),
8(1 +D3) =DQ —o,, (M), (2.8)
20 4 1,920 — 1, 0,273 £ 06 = j, /Ov, (Ms),  (2.9)
D +1,QD — 1,0,2/D +nD =j, ) v, (M, (2.10)
D—2D (1 -D?)2(DQ — 0,) -+
+(n + Q) D = Qo, +j,/v, (Ms). (2.11)

Equations (2.7) and (2.9) differ from the equations of a
plane symmetric and axisymmetric beam [2] by the
definition of the functions © and n, which enables us to
describe beams with a curvilinear axis and relativistic
velocities and having completely arbitrary cross section.

In what follows we consider a few solutions of (2.6)—
(2.11) for a beam with a helical axis in a helical mag-
netic field on a circular cylinder, so that k, », 9, Qg,
and {y are taken to be constant,

2.1. For a beam with constant cross section (D=1
in M;) Egs. (2.9) and (1.12), (1.18) lead, respectively,
to the equations determining the velocity v (1) in both
nonrelativistic and relativistic cases:

1 = Cc,—F,
OF = Q0% 4%t — Yk Qd — Y,  1(2.12)
c@pR=Ci—F=
Co + (/) 2arctgv/c — (kv* ] cy)® —
— Q2 —o0,)Iny 4 (Q2 + qu) Y2+
+2Q4k (carctgv/c — vy,
Q,2=1,(Q2 — 0,3 +92 +92,

¢ (3% — 1) = o. (2.13)

It can be seen from (2.14) that the velocityis limited
by a value determined by the equation F = C,. In the
case of Cx = 0 the periodic solution with amplitude vx
(Fig. 2) is obtained,

v, = Q. /k)u, w3 +uF2riut=i,

iy = 2,k Q% A= —2Q ] 9y .
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In particular the periodic solution
v = (2], k" (sin¥f, kD), Q, =Q, =0,

Q= o, (2.14)

satisfies the boundary conditions in the plane I = 0 at
the cathode. The velocity as a function of arc length
(2.14) is the same as in the exact solution for electro-
static flow over a disk [6]. However, the approximate
solution (2.14) is also applicable for flow along a heli-
cal magnetic field strength line. The solution for a
relativistic beam with conditions (2.14) has a period I,
and an amplitude vy« (Fig. 3),

Ye
A g = S it = L
2 : Vazarctgo/c—ovieiyz =t KBS

(r,—1/v.y=a,fbarctgy, + (v,2— 1)) —x}. (2.15)

For a beam with a constant width along s (D=1 in
M;, the equation for v follows from (2.7), (1.12):

Yo ()2 = Cy F v —
—(Q2 + Q2 + Q2 — Qo )Ys v? 4 ¥y0® (xQ,; +

+kQy — no,) — 1, (k2 +x2) vk, (2.16)

which has the same form as in (2.12), but is a function
of the torsion of the axis. A similar result is also ob-
tained in the relativistic case.
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2.2. For a beam with constant velocity, periodic solutions are in
general obtained from (2.7), (2.9)=(2.11),

D= (Qu, +j,/v) m™+ 4, sin ot + B, cos orr,
o =n-+4 Q3, M, M,
88+ Yy (n 1/, 8 + 40,87 =
=C,+j./vind, Ms, 2.1m

D= ¢, +[2,/vD + 0, In D — (n+¥,Q% DY, My, (2.18)

Di=cC,+2Qo,+/, /0D —
—(n+ Q) DP+2(Q ~ 0.2+
+ 2Qo, D) (1 + Dy 4
+2Q%In (1 + D?) — 4Qa, arc tg B, Ms. (2.19)

Equation (2.17) has the same form as the equation for the boundary
pulsations of an axisymmetric beam with a rectilinear axis in a uni-
form magnetic field [7].

The parameters of the periodic solutions (2.17) are calculated in
[71. The structure of Eqs. (2.18), (2.19) is qualitatively similar to (2.17).

2.3. Periodic solutions can also be constructed for a beam with a
constant density p,:

U=v*/Dr p,E]'./U,,

D = B4(b* — a?)"*sin o1, (2.20)

The solution (2.20) is obtained from (1.12}, (2.7), (2.9}, (2.10)
for a nonrelativistic beam if the deformations M;, Mg, M3, My are
given the following values, respectively:

%0, 0y + (k3 + %% v,2 = alw?,
1.Q10, + v, (#Q + Q) = 2b%a?,
Q2+ Q2 + Q2 —p, = 0% M1, M,
B, — 0% = a¥?, pkQq = 25%0°,

Q7 + Q3 + 92 — py, = @ M. (2.21)

The coefficients in the case of M, differ from the coefficients of
M, by a factor 4/3 in the left-hand side. The following equation is ob-
tained from (1,12), (2.11) in the case of Mg

D? = —¢f (¢® — 202D + DY) +
+2D% (1 4 D)2 (DQ — @y — 24p,)? |
which also describes the periodic variation of D. Here w, a, and b are
taken in accordance with (2.21).

2.4, The solutions of paragraph 2.1 may be used for constructing
an electron gun with a curvilinear beam, and the solution of paragraphs
2.2, 2.3 for constructing a channel which focuses an extended periodic
beam, if we specify a potential ¢ outside the beam, where ¢ satisfies
Laplace’s equation ’

e [rz/ g (q)’l - K(p’o)]v 1 + (gq>vr)vr +
g (0%, — er g, )y = 0,
s=rcosb, g=rsing,
g=r(1l —ekrcosh), o= gv’r"2 -+ e¥x3r?, (2.22)
Here !, 1, and 6 are quasi-cylindrical coordinates.
Representing the potential outside the beamin the form (1.9), (1.12}.
¢=2¢e?U+¢er(Escos 6 + Egsin 0) -+
r? (Fy -4 F,cos 20 + Fgsin 26) + ¥,
Fo =1, (3k%2 4 Q4® + Q& — 3Qjkv + 2Qx0 — 2x3%),
Fo=1, (3k%2 + Q — QF — 3Q.kv + 2Qp0),
Fo=kRw — 110, Q, (2.23)

the following approximate equation may easily be obtained from(2.22):

(rp.p)or + 4P oo = ek [(cos 8Y,y),4 1 cos B (P2,,),] —
— € [y — (xP)y — xgy + x¥P,gy] — nr —er?(nycos 0 4
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-+ ng 8inB) — €2r® (ny cos 26 + n, sin 26 + ns),

ny = GRUY + By — (wBg) — wEy — wE'y — k (6F, + 2F),

nyg = kxU’' + Eg'' + (xEq) — #2E, + %Es — 2kF,,

ng =Yy (BBUY + Yy (kEsY — Yy (wkEq)' — ki*Es —

— WkE, + F)' — 2 (#Fy) — 2uF — 4ntF,,
ne = wk2U’ + Yy (kEY + Yy (kxEg)' — kx? Eq + kxES +

+ F 4 2 (nF) 4 2wF, — 4n2F,,
ns =Y, (RBU'Y + Yy (RESY — Vg (2kEg) + Fy (2.29)

where terms of order €* have been omitted, The solution of (2.24)
which satisfies the boundary conditions on the surface r =f of a circu~
lar beam with deformation M, has the form

b=W+ Blnr—Yunrt—
— & (PP =2+ /1) (npcos B +
+ ngsin0) — 2rlnr/f—r+ 2/ r)kB cos 6} —

— Y My (= — 4t s/ f) (ma+ Yen” + ¥/ +-
+ Ykn) — (PE— P — 2 Inr/f) (W' — Y4B In f —
— B" — Y,f* kny) +
+ir— A Inr—221n(r/Hlnfl Vk2B —

— By — g (2r* — 32 + Fr7%) [(n 5 + %skng) cos 20 4-
T+ (ng + Yskng) sin 20] — Yekf2 (1 — Ypr¥2—1/,12r72) X
X [(f2ng+2kB) cos 20+ f2n, sin 26},
ry = ny -+ 3kn, B =1yrte/ v,

W=1Y,B(1—Inp,

=rd. (2.25)

The solution (2.23), (2.25) has the accuracy of the paraxial approx-
imation €,% in a tube which is 5,'0'4 times wider than thebeam, since
an additional two terms in the expansion with respect to £ have been
taken into account in (2.25).

3. Beam pulsations in a narrow cavity. Let us now
consider beam pulsations between two electrodes (Fig.
4) in two cases: plane (, s) and cylindrical (I,r), for
which Egs. (1.13)—(1.15) assume the form

S,00 + Q2% L QP = —ns - Jjv — Q =,

ov = (s, (3.1)
T + Y Qr — P8 =
= /v— Q) @yt —tpnr =9, (8.2)
r=s4q, P=P(J),
r=r, J), 2npor= (r;t. {3.3)

Here J is the stream function, P is the component
of the generalized momentum in the direction of the
cyclical coordinate q or 6. There are many papers
with the calculations of the symmetrical pulsations of
the beam boundary within the framework of the equa-
tions of paraxial optics [8], which differ from (3.1),
(3.2), apart from the definition of @ and n, by the ab-




sence of the term Q. The function Q appears as the re-
sult of the asymmetry of the plane beam (3.1) or also
as the result of the presence of the central electrode
(rod) in the axisymmetric case (Fig. 5) and its physi-
cal meaning is that of a moving charge density induced
by the beam on the electrodes. For Q = ( Egs. (3.1),
(3.2) are integrodifferential equations and do not have
degenerate solutions, while the density p is markedly
nonuniform across the beam.

3.1. Let two cylindrical electrodes be situated at
distances s =xb, b~ ax from a plane axial curve (n =
= 0) and have constant potentials V,, V_:

Vi=e2U+ e E,,
E, =kvt — Qup, (vQ, = E;= 0). (3.4)

The following expression is obtained for the potentials
¢4 in the gaps between the beam and the electrodes,
with the accuracy of the paraxial approximation:

¢y =e2U +etEs +
+ikE (82— b)) + By [s— (£ B)]. (3.5)

When the external field (3.5) is matched with thein-
ternal field (1.9), (1.12) on the boundaries of the beam
8=8, we have

B, =J,]v—Q, Q=J,(20b)t (b —(s)) = —B_,
s> =17, Ssdl. '

Here Jy is the total beam current, (s) is the centre
of gravity of the beam, It follows from (3.1) that for

(s)
(s> + 02(sd = —Q (P,

o= QF 4+ n — J,(2vd) 1.

Let w, Q, and v be constants, It then follows from
(3.1) that
s= (s> 44 (J) cos @5t + B (J) sin 0,7,
oy = (@2 4 n)",
(s> =— Q(P>02? 4 a, sinot + b, coswrt.

It is clear that in addition to the symmetric pulsa-
tions of frequency w, there is the additional oscillation
of the beam centre with the shifted frequency w. The
condtion w = 0 determines the limiting beam current
2vh (9% + n) in excess of which the beam centre oscilla-
tions become aperiodic. .

3.2. The charge density on the rod is determined as follows for an
axisymmetric beam with a rectilinear axis:

29Q = — 4nu + 297, [ v —

1

- TS In(r/RJ)'dJ, y=InR,/R_. 3.6)

Here u is the potential difference between the electrodes, R, R~
are the radii of the electrodes (Fig. 5). Letu, v, and @ be constant,
and let n = 0, For these conditions the integrodifferential equation
(3.2), (3.6) has an accuracy €,2. A solution can be found for departures
of the order g, from the equilibrium state,

_ &f (v) QR _ Py
r= R+ el S~ )
—_7_ 2nuv 1 R
S g L S & as, @7

Fig. 5

*

f e+ 0 = Qg S R,
o = 1/,Q + 2PIRY, 3.8)

Equation (3.8) describes oscillations f of frequency wg, on which
there are superimposed oscillations with the shifted frequency w,
Ju

1 dJ
51 (¢4 €05 OT + by sin 1), Sm = 2ny. (3.9)
0

Wy
Curves are given for the solution of Egs. (3.7), (3.9) in the case
P =P, = const in Fig. 6, where families of curves y(v,p,\) are shown
fory=2andx =1:

P =Yyt (1 — )7 (n[pd (8 — VO A+ 1] —
—ln[(1—v)A+1]}+ Ilnp,

p=r/r, A=Qt/4P,, v=2007%,

Regardless of the form of the solution considerable nonlinearity re-
mains in the problem, associated with the fact that the amplitude of
the oscillations depend on J through the frequency wy and the initial
conditions. This nonlinearity leads to the intersection of electron tra-
jectories at the instant f.j =0, which determines the limits of applica-
bility of the solution.

Note 1. It is interesting to note that the coaxial equation for 2
beam which is symmetric relative to a rectilinear axis and has an ap-
preciable nonstationary axial velocity and magnetic field [v = v(t, 1),
Q = Q(t, 1] is of the form (3.2) when J/v is replaced by J/1,). In this
case

n= U'”, U=Ul(t b, A’,l = vl.'l, 2nrp = (r’Jl')‘)‘l.

As distinct from the steady-state beam the paraxial family of tra-
jectories given here depends markedly on the integral of motion of an
electron with axial velocity vir =r(t,A,]J). In particular there are also
degenerate solutions of the form (2.1)-(2.4), where «, B, and v are
already functions of t and A and a dot denotes a partial derivative with
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respect to t, Any attempt to construct a paraxial equation for a non-
steady-state beam with a curvilinear axis necessitates a more general
approach, which takes into account the nonstationarity of conditions
on the axis and the nonstationarity of the axis itself.

Note 2. It can be shown that degenerate solutions satisfy zero ve-
locity emission conditions on curvilinear cathodes also.
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